TUBING & CASING DATA

TUBING DATA:
- **Tubing**
 - Outside Diameter (INCHES)
 - Inside Diameter (INCHES)
 - Capacity per Foot (BBLS/FT)
 - Length to E.O.T. (MD — FT)

Tubing Collapse
- Tubing Collapse (PSI)
- Safety Factor (0.70 or Less)
- Adjusted Tubing Collapse (PSI)

Tubing Yield
- Tubing Yield (PSI)
- Safety Factor (0.70 or Less)
- Adjusted Tubing Internal Yield (PSI)

CASING DATA:
- **Casing**
 - Outside Diameter (INCHES)
 - Inside Diameter (INCHES)
 - Capacity per Foot (BBLS/FT)
 - Length (MD — FT)

Casing Internal Yield
- Casing Internal Yield (PSI)
- Safety Factor (0.70 or Less)
- Adjusted Casing Yield (PSI)

PRESSURE CONSIDERATIONS:
- **Pressure Consideration PSI per “Step”**
 - Initial Max. Pressure on Tubing (PSI)
 - Final Max. Pressure on Tubing (PSI)
 - Number of “Steps”
 - PSI per “Step” (PSI/STEP)
 - Rating Pressure (PSI)

- **Volume per “Step”**
 - Volume per “Step” (GALS/STEP)

- **Strokes per “Step”**
 - Strokes per “Step” (STKS/STEP)

PRESSURE CHART

<table>
<thead>
<tr>
<th>Strokes</th>
<th>Volume in BBLS</th>
<th>Volume in GALS</th>
<th>Estimated Max. Static Pressure</th>
<th>Actual Tubing Pressure</th>
<th>Casing Pressure</th>
<th>Pump Rate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Units (psi, ft, ppg)

Rev 08/16/07
Page 2
FORMULAS

1. Pressure Gradient (psi/ft) = Mud Weight (ppg) x 0.052

2. Hydrostatic Pressure (psi) = Mud Weight (ppg) x 0.052 x Depth (ft, TVD)

3. Capacity (bbls/ft) = Inside Diameter2 (in.) + 1029.4

4. Annular Capacity (bbls/ft) = (Inside Diameter of Casing2 (in.) or Hole Diameter2 (in.) - Outside Diameter of Pipe2 (in.)) ÷ 1029.4

5. Pipe Displacement (bbls/ft) = (Outside Diameter of pipe2 (in.) - Inside Diameter of pipe2 (in.)) ÷ 1029.4

6. Maximum Allowable Mud Weight (ppg) = \(\frac{\text{Surface LOT Pressure (psi)}}{\text{Shoe Depth (ft, TVD) x 0.052}} + \text{LOT Mud Weight (ppg)} \)

7. MAASP (psi) = [Maximum Allowable Mud Weight (ppg) - Present Mud Weight (ppg)] x 0.052 x Shoe TVD (ft)

8. Formation Pressure (psi) = Hydrostatic Pressure Mud in Hole (psi) + SIDPP (psi)

9. Sacks (100 lb) of Barite Needed to Weight-Up Mud = \(\frac{\text{Bbls of Mud in System} \times 14.9 \times (\text{KMW - OMW})}{(35.4 - \text{KMW})} \)

 NOTE: This formula assumes that the average density of Barite is 35.4 ppg and the average number of sacks (100lb) per barrel is 14.9.

10. Volume Increase from Adding Barite (bbls) = Number of Sacks (100 lb) added ÷ 14.9

11. Equivalent Mud Weight (ppg) @ __________ depth (ft) = \(\frac{\text{Pressure (psi)}}{\text{Depth (ft, TVD) x 0.052}} \)

12. Estimated New Pump Pressure at New Pump Rate (psi) = Old Pump Pressure (psi) x \(\left(\frac{\text{New Pump Rate (SPM)}}{\text{Old Pump Rate (SPM)}} \right)^2 \)

13. Estimated New Pump Pressure with New Mud Weight (psi) = Old Pump Pressure (psi) x \(\frac{\text{New Mud Weight (ppg)}}{\text{Old Mud Weight (ppg)}} \)

COMMENTS

Field Units
(psi, ft, ppg)