PRE-RECORDED INFORMATION

TRUE PUMP OUTPUT:

\[
\text{Bbls/Stk} @ 100\% \times \frac{\text{% Efficiency}}{\text{TPO (Bbls/Stk)}} = \text{Strokes to Pump}
\]

DRILL STRING CAPACITY:

\[
\text{Drill #1:} \quad \text{Pipe Size (in.)} \times \text{Weight (lb/t)} \times \text{Length (ft)} = \text{Bbls}
\]

\[
\text{Drill #2:} \quad \text{Pipe Size (in.)} \times \text{Weight (lb/t)} \times \text{Length (ft)} = \text{Bbls}
\]

\[
\text{HWDP:} \quad \text{Pipe Size (in.)} \times \text{Weight (lb/t)} \times \text{Length (ft)} = \text{Bbls}
\]

STROKES FROM SURFACE TO BIT:

\[
\text{Total Drill String Capacity (Bbls)} \div \text{True Pump Output (Bbls/Stk)} = \text{Strokes, Surface to Bit}
\]

ANNULAR CAPACITY:

\[
\text{Between CSG and DP:} \quad \text{Bbls} \div \text{Bbls/ft} = \text{Bbls}
\]

\[
\text{Between Liner #1 and DP:} \quad \text{Bbls} \div \text{Bbls/ft} = \text{Bbls}
\]

\[
\text{Between Liner #2 and DP:} \quad \text{Bbls} \div \text{Bbls/ft} = \text{Bbls}
\]

\[
\text{Between OH and DP/HWDP:} \quad \text{Bbls} \div \text{Bbls/ft} = \text{Bbls}
\]

\[
\text{Between OH and DC:} \quad \text{Bbls} \div \text{Bbls/ft} = \text{Bbls}
\]

STROKES FROM BIT TO SHOE:

\[
\text{Open Hole Annular Vol. (Bbls)} \div \text{True Pump Output (Bbls/Stk)} = \text{Strokes, Bit to Shoe}
\]

STROKES FROM BIT TO SURFACE:

\[
\text{Total Annular Volume (Bbls)} \div \text{True Pump Output (Bbls/Stk)} = \text{Strokes, Bit to Surface}
\]

TOTAL STROKES FROM SURFACE TO SURFACE:

\[
\text{Strokes, Surface to Bit} + \text{Strokes, Bit to Surface} = \text{Strokes, Surface to Surface}
\]

MAXIMUM ALLOWABLE MUD DENSITY (ppg)

\[
\left(\frac{\text{Surface LOT Pressure (psi)}}{0.052} \right) + \left(\frac{\text{Shoe Depth (ft, TUD)}}{\text{LOT Mud Density (ppg)}} \right) = \text{MAX. ALLOWABLE MUD DENSITY (ppg)}
\]

MAXIMUM ALLOWABLE ANNULAR SURFACE PRESSURE (MAASP) (psi)

\[
\left(\frac{\text{Max. Allowable Mud Density (ppg)} - \text{Present Mud Density (ppg)}}{\text{Shoe Depth (ft, TUD)}} \right) \times 0.052 \times \text{Shoe Depth (ft, TUD)} = \text{MAX. ALLOWABLE ANNULAR SURFACE PRESSURE (psi)}
\]

CURRENT WELL DATA

PRESENT MUD WEIGHT:

SLOW CIRCULATION RATE (SCR):

\[
\text{SCR taken at } \frac{\text{Stk/ft}}{\text{Pressure (psi)}} \quad \text{Bbl/min} \div \text{Pressure (psi)}
\]

CASING DATA:

CASING

<table>
<thead>
<tr>
<th>size</th>
<th>ID</th>
<th>weight</th>
</tr>
</thead>
</table>

SHOE DEPTH

\[
\text{MD / TVD} \quad \text{ft}
\]

SHOE TEST DATA:

\[
\text{Depth #1} \quad \text{Test MW of} \quad \text{ppg}
\]

\[
\text{Depth #2} \quad \text{Test MW of} \quad \text{ppg}
\]

\[
\text{Depth #3} \quad \text{Test MW of} \quad \text{ppg}
\]

LINER #1

<table>
<thead>
<tr>
<th>size</th>
<th>ID</th>
<th>weight</th>
</tr>
</thead>
</table>

LINER #2

<table>
<thead>
<tr>
<th>size</th>
<th>ID</th>
<th>weight</th>
</tr>
</thead>
</table>

LINER #1 TOP DEPTH

LINER #2 TOP DEPTH

LINER #1 SHOE DEPTH

LINER #2 SHOE DEPTH

TVD CASING or LINER

\[
\text{ft}
\]

HOLE DATA:

TOTAL DEPTH (MD)

\[
\text{ft}
\]

TOTAL DEPTH (TVD)

\[
\text{ft}
\]

BIT DEPTH

\[
\text{MD / TVD} \quad \text{ft}
\]

BIT SIZE

\[
\text{inches}
\]
KICK DATA

SIDPP: __________ psi
SICP: __________ psi
PIT GAIN: __________ Bbls
Time of Incident: __ : __

CALCULATIONS

KILL MUD WEIGHT (KMW)

\[
\text{SIDPP (psi)} \div 0.052 \div \left(\frac{\text{True Vertical Depth (ft)}}{\text{Present Mud Weight (ppg)}} \right) + \frac{\text{Present Mud Weight (ppg)}}{\text{Pump Pressure (psi) @ SCR of _______ SPM}} = \text{KILL MUD WEIGHT (ppg)}
\]

INITIAL CIRCULATING PRESSURE (ICP)

\[
\frac{\text{SIDPP (psi)}}{\text{Pump Pressure (psi) @ SCR of _______ SPM}} \times \frac{\text{Kill Mud Weight (ppg)}}{\text{Present Mud Weight (ppg)}} = \text{INITIAL CIRCULATING PRESSURE (psi)}
\]

FINAL CIRCULATING PRESSURE (FCP)

\[
\frac{\text{Pump Pressure (psi) @ SCR of _______ SPM}}{\text{Kill Mud Weight (ppg)}} \div \frac{\text{Present Mud Weight (ppg)}}{} = \text{FINAL CIRCULATING PRESSURE (psi)}
\]

PRESSURE CHART

<table>
<thead>
<tr>
<th>Stroke or Volume</th>
<th>Theoretical Drill Pipe Pressure</th>
<th>Actual Drill Pipe Pressure</th>
<th>Actual Casing Pressure</th>
<th>Actual Pit Volume Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE</td>
<td>0</td>
<td>ICP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{\text{FCP}}{10} = \frac{\text{STrokes Surface to Bit}}{\text{STrokes per Step}} - \frac{\text{ICP}}{10} = \frac{\text{Initial Circulation Pressure}}{\text{Final Circulation Pressure PSI per Step}}
\]

<table>
<thead>
<tr>
<th>Stroke or Volume</th>
<th>Theoretical Drill Pipe Pressure</th>
<th>Actual Drill Pipe Pressure</th>
<th>Actual Casing Pressure</th>
<th>Actual Pit Volume Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT</td>
<td>FCP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{\text{FCP}}{10} = \frac{\text{STrokes to Surface}}{\text{STrokes per Step}}
\]

<table>
<thead>
<tr>
<th>Stroke or Volume</th>
<th>Theoretical Drill Pipe Pressure</th>
<th>Actual Drill Pipe Pressure</th>
<th>Actual Casing Pressure</th>
<th>Actual Pit Volume Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{\text{FCP}}{10} = \frac{\text{STrokes to Surface}}{\text{STrokes per Step}}
\]
1. Pressure Gradient (psi/ft) = Mud Weight (ppg) x 0.052

2. Hydrostatic Pressure (psi) = Mud Weight (ppg) x 0.052 x Depth (ft, TVD)

3. Capacity (bbls/ft) = Inside Diameter\(^2\) (in.) + 1029.4

4. Annular Capacity (bbls/ft) = (Inside Diameter of Casing\(^2\) (in.) or Hole Diameter\(^2\) (in.) - Outside Diameter of Pipe\(^2\) (in.)) + 1029.4

5. Pipe Displacement (bbls/ft) = (Outside Diameter of pipe\(^2\) (in.) - Inside Diameter of pipe\(^2\) (in.)) + 1029.4

6. Maximum Allowable Mud Weight (ppg) = \(\frac{\text{Surface LOT Pressure (psi)}}{\text{Shoe Depth (ft, TVD)} \times 0.052} + \text{LOT Mud Weight (ppg)}\)

7. MAASP (psi) = [Maximum Allowable Mud Weight (ppg) - Present Mud Weight (ppg)] x 0.052 x Shoe TVD (ft)

8. Pressure Drop per Foot Tripping Dry Pipe (psi/ft) = \(\frac{\text{Drilling Mud Weight (ppg) x 0.052 x Metal Displacement (bbl/ft)}}{\text{Casing Capacity (bbl/ft) - Metal Displacement (bbl/ft)}}\)

9. Pressure Drop per Foot Tripping Wet Pipe (psi/ft) = \(\frac{\text{Drilling Mud Weight (ppg) x 0.052 x Closed End Displacement (bbl/ft)}}{\text{Casing Capacity (bbl/ft) - Closed End Displacement (bbl/ft)}}\)

10. Formation Pressure (psi) = Hydrostatic Pressure Mud in Hole (psi) + SIDPP (psi)

11. EMW (ppg) @ Shoe = (SICP (psi) ÷ 0.052 ÷ Shoe Depth (ft, TVD)) + Present Mud Weight (ppg)

12. Sacks (100 lb) of Barite Needed to Weight-Up Mud = \(\frac{\text{Bbls of Mud in System} \times 14.9 \times (\text{KMW - OMW})}{(35.4 - \text{KMW})}\)

 NOTE: This formula assumes that the average density of Barite is 35.4 ppg and the average number of sacks (100lb) per barrel is 14.9.

13. Volume Increase from Adding Barite (bbls) = Number of Sacks (100 lb) added ÷ 14.9

14. Equivalent Mud Weight (ppg) @ [depth (ft)] = \(\left[\frac{\text{Pressure (psi)}}{\text{Depth (ft, TVD)} \times 0.052}\right] + \text{Current Mud Weight (ppg)}\)

15. Estimated New Pump Pressure at New Pump Rate (psi) = Old Pump Pressure (psi) x \(\left[\frac{\text{New Pump Rate (SPM)}}{\text{Old Pump Rate (SPM)}}\right]^2\)

16. Estimated New Pump Pressure with New Mud Weight (psi) = Old Pump Pressure (psi) x \(\frac{\text{New Mud Weight (ppg)}}{\text{Old Mud Weight (ppg)}}\)